Our paper on analysis of dominance in Pannon White rabbits has been accepted and will appear in Journal of Animal breeding and Genetics. Abstract says:
In a synthetic closed population of Pannon White rabbits, additive (VA), dominance (VD) and permanent environmental (VPe) variance components as well as doe (bFd) and litter (bFl) inbreeding depression were estimated for the number of kits born alive (NBA), number of kits born dead (NBD) and total number of kits born (TNB). The data set consisted of 18,398 kindling records of 3883 does collected from 1992 to 2009. Six models were used to estimate dominance and inbreeding effects. The most complete model estimated VA and VD to contribute 5.5 ± 1.1% and 4.8 ± 2.4%, respectively, to total phenotypic variance (VP) for NBA; the corresponding values for NBD were 1.9 ± 0.6% and 5.3 ± 2.4%, for TNB, 6.2 ± 1.0% and 8.1 ± 3.2% respectively. These results indicate the presence of considerable VD. Including dominance in the model generally reduced VA and VPe estimates, and had only a very small effect on inbreeding depression estimates. Including inbreeding covariates did not affect estimates of any variance component. A 10% increase in doe inbreeding significantly increased NBD (bFd = 0.18 ± 0.07), while a 10% increase in litter inbreeding significantly reduced NBA (bFl = −0.41 ± 0.11) and TNB (bFl = −0.34 ± 0.10). These findings argue for including dominance effects in models of litter size traits in populations that exhibit significant dominance relationships.
The contribution of dominance and inbreeding depression in estimating variance components for litter size i... by