R version 2.14.2 (2012-02-29)
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
[Previously saved workspace restored]
>
> options(width=200)
>
> ### --- Required packages ---
>
> ## install.packages(pkg=c("pedigreemm", "MatrixModels"))
>
> library(package="pedigreemm") ## pedigree functions
Loading required package: lme4
Loading required package: Matrix
Loading required package: lattice
Attaching package: ‘Matrix’
The following object(s) are masked from ‘package:base’:
det
Attaching package: ‘lme4’
The following object(s) are masked from ‘package:stats’:
AIC, BIC
> library(package="MatrixModels") ## sparse matrices
>
> ### --- Data ---
>
> ## NOTE:
> ## - some individuals have one or both parents (un)known
> ## - some individuals have phenotype (un)known
> ## - some indididuals have repeated phenotype observations
> example <- data.frame(
+ individual=c( 1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10),
+ father=c(NA, NA, NA, 2, 2, 4, 2, 5, 5, NA, 8),
+ mother=c(NA, NA, NA, 1, NA, 3, 3, 6, 6, NA, 9),
+ phenotype=c(NA, 103, 106, 98, 101, 106, 93, NA, NA, NA, 109),
+ group=c(NA, 1, 1, 1, 2, 2, 2, NA, NA, NA, 1))
>
> ## Variance components
> sigma2e <- 1
> sigma2a <- 3
> (h2 <- sigma2a / (sigma2a + sigma2e))
[1] 0.75
>
> ### --- Setup data ---
>
> ## Make sure each individual has only one record in pedigree
> ped <- example[!duplicated(example$individual), 1:3]
>
> ## Factors (this eases buliding the design matrix considerably)
> example$individual <- factor(example$individual)
> example$group <- factor(example$group)
>
> ## Phenotype data
> dat <- example[!is.na(example$phenotype), ]
>
> ### --- Setup MME ---
>
> ## Phenotype vector
> (y <- dat$phenotype)
[1] 103 106 98 101 106 93 109
>
> ## Design matrix for the "fixed" effects (group)
> (X <- model.Matrix( ~ group, data=dat, sparse=TRUE))
"dsparseModelMatrix": 7 x 2 sparse Matrix of class "dgCMatrix"
(Intercept) group2
2 1 .
3 1 .
4 1 .
5 1 1
6 1 1
7 1 1
11 1 .
@ assign: 0 1
@ contrasts:
$group
[1] "contr.treatment"
>
> ## Design matrix for the "random" effects (individual)
> (Z <- model.Matrix(~ individual - 1, data=dat, sparse=TRUE))
"dsparseModelMatrix": 7 x 10 sparse Matrix of class "dgCMatrix"
[[ suppressing 10 column names ‘individual1’, ‘individual2’, ‘individual3’ ... ]]
2 . 1 . . . . . . . .
3 . 1 . . . . . . . .
4 . . 1 . . . . . . .
5 . . . 1 . . . . . .
6 . . . . 1 . . . . .
7 . . . . . 1 . . . .
11 . . . . . . . . . 1
@ assign: 1 1 1 1 1 1 1 1 1 1
@ contrasts:
$individual
[1] "contr.treatment"
>
> ## Inverse additive relationship matrix
> ped2 <- pedigree(sire=ped$father, dam=ped$mother, label=ped$individual)
> TInv <- as(ped2, "sparseMatrix")
> DInv <- Diagonal(x=1/Dmat(ped2))
> AInv <- crossprod(sqrt(DInv) %*% TInv)
>
> ## Variance ratio
> alpha <- sigma2e / sigma2a
>
> ## Mixed Model Equations (MME)
>
> ## ... Left-Hand Side (LHS) without pedigree prior
> (LHS0 <- rBind(cBind(crossprod(X), crossprod(X, Z)),
+ cBind(crossprod(Z, X), crossprod(Z, Z))))
12 x 12 sparse Matrix of class "dgCMatrix"
[[ suppressing 12 column names ‘(Intercept)’, ‘group2’, ‘individual1’ ... ]]
(Intercept) 7 3 . 2 1 1 1 1 . . . 1
group2 3 3 . . . 1 1 1 . . . .
individual1 . . . . . . . . . . . .
individual2 2 . . 2 . . . . . . . .
individual3 1 . . . 1 . . . . . . .
individual4 1 1 . . . 1 . . . . . .
individual5 1 1 . . . . 1 . . . . .
individual6 1 1 . . . . . 1 . . . .
individual7 . . . . . . . . . . . .
individual8 . . . . . . . . . . . .
individual9 . . . . . . . . . . . .
individual10 1 . . . . . . . . . . 1
>
> ## ... Left-Hand Side (LHS) with pedigree prior
> round(
+ LHS <- rBind(cBind(crossprod(X), crossprod(X, Z)),
+ cBind(crossprod(Z, X), crossprod(Z, Z) + AInv * alpha)), digits=1)
12 x 12 sparse Matrix of class "dgCMatrix"
[[ suppressing 12 column names ‘(Intercept)’, ‘group2’, ‘individual1’ ... ]]
(Intercept) 7 3 . 2.0 1.0 1.0 1.0 1.0 . . . 1.0
group2 3 3 . . . 1.0 1.0 1.0 . . . .
individual1 . . 0.5 0.2 -0.3 . . . . . . .
individual2 2 . 0.2 2.8 -0.2 -0.2 . -0.3 . . . .
individual3 1 . -0.3 -0.2 2.0 0.2 -0.3 -0.3 . . . .
individual4 1 1 . -0.2 0.2 1.6 -0.3 . . . . .
individual5 1 1 . . -0.3 -0.3 2.1 0.4 -0.4 -0.4 . .
individual6 1 1 . -0.3 -0.3 . 0.4 2.1 -0.4 -0.4 . .
individual7 . . . . . . -0.4 -0.4 0.8 . . .
individual8 . . . . . . -0.4 -0.4 . 1.0 0.2 -0.4
individual9 . . . . . . . . . 0.2 0.5 -0.4
individual10 1 . . . . . . . . -0.4 -0.4 1.8
>
> ## ... Right-Hand Side (RHS)
> (RHS <- rBind(crossprod(X, y),
+ crossprod(Z, y)))
12 x 1 Matrix of class "dgeMatrix"
[,1]
(Intercept) 716
group2 300
individual1 0
individual2 209
individual3 98
individual4 101
individual5 106
individual6 93
individual7 0
individual8 0
individual9 0
individual10 109
>
> ### --- Solutions ---
>
> ## Solve
> LHSInv <- solve(LHS)
> sol <- LHSInv %*% RHS
>
> ## Standard errors
> se <- diag(LHSInv) * sigma2e
>
> ## Reliabilities
> r2 <- 1 - diag(LHSInv) * alpha
>
> ## Accuracies
> r <- sqrt(r2)
Warning message:
In sqrt(r2) : NaNs produced
>
> ## Printout
> cBind(sol, se, r, r2)
12 x 4 Matrix of class "dgeMatrix"
se r r2
[1,] 104.76444809 1.901479 0.6051228 0.3661736
[2,] -4.65061921 1.376348 0.7356748 0.5412175
[3,] -2.62685846 2.432448 0.4349528 0.1891839
[4,] -0.77797260 1.983301 0.5821509 0.3388997
[5,] -4.32927399 1.979138 0.5833415 0.3402874
[6,] 1.54997883 2.316720 0.4772421 0.2277600
[7,] 3.18706240 2.604540 0.3630701 0.1318199
[8,] -5.07852788 2.508673 0.4046922 0.1637758
[9,] -0.94573274 3.459904 NaN -0.1533013
[10,] -0.08765651 3.534636 NaN -0.1782121
[11,] 2.11218764 2.511203 0.4036487 0.1629323
[12,] 2.82742681 2.009539 0.5745901 0.3301538
>
> proc.time()
user system elapsed
3.350 0.070 3.425