Shirin Amiri was asking about GBLUP (genomic BLUP) and based on her example I set up the following R script to show how GBLUP works. Note that this is the so called marker model, where we estimate allele substitution effects of the markers and not individual based model, where genomic breeding values are inferred directly. The code:
library(package="MatrixModels") dat <- data.frame( y=c(1.5, 2.35, 3.4, 2.31, 1.53), s1=c("AA", "Aa", "Aa", "AA", "aa"), s2=c("Bb", "BB", "bb", "BB", "bb"), s3=c("cc", "Cc", "Cc", "cc", "CC"), s4=c("Dd", "Dd", "DD", "dd", "Dd")) cols <- paste("s", 1:4, sep="") dat[, cols] <- lapply(dat[, cols], function(z) as.integer(z) - 1) lambda <- 1 (y <- dat$y) (X <- model.Matrix(y ~ 1, data=dat, sparse=TRUE)) (Z <- model.Matrix(y ~ -1 + s1 + s2 + s3 + s4, data=dat, sparse=TRUE)) XX <- crossprod(X) XZ <- crossprod(X, Z) ZZ <- crossprod(Z) Xy <- crossprod(X, y) Zy <- crossprod(Z, y) (LHS <- rBind(cBind(XX, XZ), cBind(t(XZ), ZZ + Diagonal(n=dim(ZZ)[1]) * lambda))) (RHS <- rBind(Xy, Zy)) (sol <- solve(LHS, RHS)) (GEBV <- Z %*% sol[-1])
And the transcript:
R version 2.14.2 (2012-02-29) Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > library(package="MatrixModels") Loading required package: Matrix Loading required package: lattice Attaching package: ‘Matrix’ The following object(s) are masked from ‘package:base’: det Attaching package: ‘MatrixModels’ The following object(s) are masked from ‘package:stats’: getCall > > dat <- data.frame( y=c(1.5, 2.35, 3.4, 2.31, 1.53), + s1=c("AA", "Aa", "Aa", "AA", "aa"), + s2=c("Bb", "BB", "bb", "BB", "bb"), + s3=c("cc", "Cc", "Cc", "cc", "CC"), + s4=c("Dd", "Dd", "DD", "dd", "Dd")) > > cols <- paste("s", 1:4, sep="") > dat[, cols] <- lapply(dat[, cols], function(z) as.integer(z) - 1) > > lambda <- 1 > > (y <- dat$y) [1] 1.50 2.35 3.40 2.31 1.53 > (X <- model.Matrix(y ~ 1, data=dat, sparse=TRUE)) "dsparseModelMatrix": 5 x 1 sparse Matrix of class "dgCMatrix" (Intercept) 1 1 2 1 3 1 4 1 5 1 @ assign: 0 @ contrasts: named list() > (Z <- model.Matrix(y ~ -1 + s1 + s2 + s3 + s4, data=dat, sparse=TRUE)) "dsparseModelMatrix": 5 x 4 sparse Matrix of class "dgCMatrix" s1 s2 s3 s4 1 2 1 . 1 2 1 2 1 1 3 1 . 1 2 4 2 2 . . 5 . . 2 1 @ assign: 1 2 3 4 @ contrasts: named list() > > XX <- crossprod(X) > XZ <- crossprod(X, Z) > ZZ <- crossprod(Z) > > Xy <- crossprod(X, y) > Zy <- crossprod(Z, y) > > (LHS <- rBind(cBind(XX, XZ), + cBind(t(XZ), ZZ + Diagonal(n=dim(ZZ)[1]) * lambda))) 5 x 5 sparse Matrix of class "dgCMatrix" (Intercept) s1 s2 s3 s4 (Intercept) 5 6 5 4 5 s1 6 11 8 2 5 s2 5 8 10 2 3 s3 4 2 2 7 5 s4 5 5 3 5 8 > > (RHS <- rBind(Xy, + Zy)) 5 x 1 Matrix of class "dgeMatrix" [,1] (Intercept) 11.09 s1 13.37 s2 10.82 s3 8.81 s4 12.18 > > (sol <- solve(LHS, RHS)) 5 x 1 Matrix of class "dgeMatrix" [,1] (Intercept) 1.65468864 s1 0.05223443 s2 0.08655678 s3 -0.05223443 s4 0.45586081 > > (GEBV <- Z %*% sol[-1]) 5 x 1 Matrix of class "dgeMatrix" [,1] 1 0.6468864 2 0.6289744 3 0.9117216 4 0.2775824 5 0.3513919 > > proc.time() user system elapsed 2.330 0.070 2.412
6 comments:
This is not a correct implementation of a genomic based prediction.
Can you please comment which part is not correct?
Maybe first comment meant that this is not GBLUP but it is SNP-BLUP as you have not used genomic relationship matrix in your model.
Hadi
Correct, though with the caveat that SNP-BLUP and G-BLUP are equivalent models so we still get GEBV at the end as shown.
XX <- crossprod(X)
gives me
Error in crossprod(x, y) :
requires numeric/complex matrix/vector arguments
The modified scripted as below works just fine on my rstudio:
```
library(package="MatrixModels")
dat <- data.frame( y=c(1.5, 2.35, 3.4, 2.31, 1.53),
s1=c("AA", "Aa", "Aa", "AA", "aa"),
s2=c("Bb", "BB", "bb", "BB", "bb"),
s3=c("cc", "Cc", "Cc", "cc", "CC"),
s4=c("Dd", "Dd", "DD", "dd", "Dd"))
cols <- paste("s", 1:4, sep="")
dat[, cols] <- lapply(dat[, cols], function(z) as.integer(z) - 1)
lambda <- 1
dat
(y <- dat$y)
(X <- as.matrix(model.Matrix(y ~ 1, data=dat, sparse=TRUE)))
(Z <- as.matrix(model.Matrix(y ~ -1 + s1 + s2 + s3 + s4, data=dat, sparse=TRUE)))
XX <- crossprod(X)
XZ <- crossprod(X, Z)
ZZ <- crossprod(Z)
Xy <- crossprod(X, y)
Zy <- crossprod(Z, y)
(LHS <- rbind(cbind(XX, XZ),
cbind(t(XZ), ZZ + diag(dim(ZZ)[1]) * lambda)))
(RHS <- rbind(Xy,
Zy))
(sol <- solve(LHS, RHS))
(GEBV <- Z %*% sol[-1])
```
Post a Comment